概述
随着半导体技术的快速发展,近年来FPGA 的器件容量和输入输出的管脚数量都极大的增加了,例如StratixIV 器件,最大的一款EP4SE680 拥有68.11 万个逻辑单元和1104个输入输出管脚。大量的输出管脚在同一时刻翻转会引起同步切换噪声。目前同步切换噪声是FPGA 领域的一个新的挑战。
同步切换噪声的定义
当大量的输出管脚在同一个时刻从高电平到低电平的切换或者从低电平到高电平的切换,会在相邻的管脚上引入噪声,这就是同步切换噪声。典型的一个同步切换噪声的测试设置如图。设置中,FPGA 器件的输入输出的电平标准配置为SSTL18 ClassII。多个在同一时刻不断翻转的输出管脚定义为干扰者。一个保持为高或者低的输出管脚定义为被干扰者。干扰者和被干扰者典型的容性负载值为10pF。干扰者以同一个时钟信号的边沿作为触发。
当干扰者信号同时从低电平到高电平切换时,在被干扰者信号上会观测到一个负电压的噪声。当干扰者信号同时从高电平到低电平切换时,在被干扰者信号上会观测到一个正电压的噪声。
随着干扰者信号数量的增加,噪声的幅度也会随着增加。在相同数量的干扰者情况下,如果把被干扰者远离干扰者,噪声的幅度会有所降低。
同步切换噪声的机制
不同于一般的信号完整性问题,同步切换噪声是由多个噪声机制共同作用的结果。在其中,目前一般认为同步切换噪声主要是由两种机制共同作用造成的。
1.电源网络的Delta-I 噪声
当信号从低电平切换到高电平,上拉驱动器打开同时下拉驱动器关断。电流从Vccio 开始流通,电流环路是从电源到器件芯片的供电回路。由于电源网络的电感特性,会遏制电流立刻到达器件芯片。因此在Vccio 上会有一定的压降。这就是电源网络的Delta-I噪声。
电源网络的Delta-I 噪声可以表示为:
Δv = L dI/dt
其中,L为封装和PCB上的串行电感。dI/dt是当电平翻转时的电流。
2.互感性的信号串绕
这里所说的串绕,主要是指发生在芯片封装上和在器件的引出过孔区域的互感性的串绕。
在器件的封装和器件的引出过孔区域,器件的所有输入输出管脚以平行的紧耦合的形式在这个小区域内存在。
每个输出管脚的焊球,相应的PCB 过孔以及附近的电源或者地的管脚会形成一个回路。而多个相邻的输出管脚会共用一个电源或者地的回路。它们不可避免的会发生互感性的串绕。当多个输出管脚同时翻转,会有瞬态的电流流过回路。瞬态的电流必然会导致对相邻的管脚上产生互感性的串绕。
互感性的串绕可以表示为:
Δv’ = ΣMiq di/dt
其中,Miq 是被干扰者与每一个干扰者之间的互感系数。dI/dt 是当电平翻转时的电流。
同步切换噪声信号的分析
同步切换噪声是由两种机制独立并且同时作用,我们也可以从同步切换噪声信号中分析出来。
我们以一个上升沿时间为Tr,周期为T 的时钟信号作为参考。把这样的时钟信号通过傅利叶变换到频域空间,得到它的频谱。分析它的频谱,0.35/Tr 是信号的膝频率点。频率低于膝频率点的信号能量以20dB 的速度衰减,而频率高于膝频率点的信号能量以40dB 的速度急剧衰减。
对于同步切换噪声的信号,我们可以通过示波器得到相应的波形,相应的变换到频域空间。我们可以看到同步切换噪声信号的频谱上有两个能量峰,其中一个位于频率较低的部分,另外一个位于频率较高的部分。