
不同于ISA总线,PCI总线的地址总线与数据总线是分时复用的。这样做的好处是,一方面可以节省接插件的管脚数,另一方面便于实现突发数据传输。在做数据传输时,由一个PCI设备做发起者(主控,Initiator或Master),而另一个PCI设备做目标(从设备,Target或Slave)。总线上的所有时序的产生与控制,都由Master来发起。PCI总线在同一时刻只能供一对设备完成传输,这就要求有一个仲裁机构(Arbiter),来决定在谁有权力拿到总线的主控权。
当PCI总线进行操作时,发起者(Master)先置REQ#,当得到仲裁器(Arbiter)的许可时(GNT#),会将FRAME#置低,并在AD总线上放置Slave地址,同时C/BE#放置命令信号,说明接下来的传输类型。所有PCI总线上设备都需对此地址译码,被选中的设备要置DEVSEL#以声明自己被选中。然后当IRDY#与TRDY#都置低时,可以传输数据。当Master数据传输结束前,将FRAME#置高以标明只剩最后一组数据要传输,并在传完数据后放开IRDY#以释放总线控制权。
这里我们可以看出,PCI总线的传输是很高效的,发出一组地址后,理想状态下可以连续发数据,峰值速率为132MB/s。实际上,目前流行的33M@32bit北桥芯片一般可以做到100MB/s的连续传输。
图1 为1 个典型的 PC I 多总线系统结构图。
其主要 特点如下:
( 1 ) PC I 规则支持多总线结构。 在整个系统中, 存 在着3种不同的总线:
①HO ST B u s 为整个系统中最基本设备之间高性 能的连接, 它一般是 I T EL X 86 类型总线。
②PC I B u s 为系统高性能局部总线, 各种高性能 外设连于其上, 增强系统功能。
③L EGA CY B u s 为传统的性能较低的总线, 如 ISA 、 ISA 、 CA 总线。
( 2) 整个系统可以分为多个层次, 不同的总线通过桥路 (BR I GE ) 相连, 桥路的主要功能是在2 种不同的 D 信号环境间进行转换, 使不同总线间的数据传输可以 顺畅进行。