车牌定位算法技术,车牌目标区域特点,基于边缘检测的车牌定位方法,基于彩色分割的车牌定位方法
电子元件,电子元器件深圳市创唯电子有限公司
您现在的位置: 首页 > 电子知识 > 车牌定位算法技术,车牌目标区域特点,基于边缘检测的车牌定位方法,基于彩色分割的车牌定位方法
车牌定位算法技术,车牌目标区域特点,基于边缘检测的车牌定位方法,基于彩色分割的车牌定位方法  2011/10/3

目录

  • 车牌目标区域特点
  • 基于边缘检测的车牌定位方法
  • 基于彩色分割的车牌定位方法
车牌定位算法技术

车牌目标区域特点

  •   车牌定位方法的出发点是利用车牌区域的特征来判断牌照,将车牌区域从整幅车辆图像中分割出来。车牌自身具有许多的固有特征,这些特征对于不同的国家是不同的。从人的视觉角度出发,我国车牌具有以下可用于定位的特征:

      (1)车牌底色一般与车身颜色、字符颜色有较大差异;

      (2)车牌有一个连续或由于磨损而不连续的边框;

      (3)车牌内字符有多个,基本呈水平排列,在牌照的矩形区域内存在丰富的边缘,呈现规则的纹理特征;

      (4)车牌内字符之间的间隔较均匀,字符和牌照底色在灰度值上存在较大的跳变,字符本身和牌照底内部都有比较均匀的灰度;

      (5)不同图像中牌照的具体大小、位置不确定,但其长宽比在一定的变化范围内,存在1个最大值和1个最小值。

      以上几种特征都是概念性的,各项特征单独看来都非车牌图像所独有,但将它们结合起来可以唯一地确定车牌。在这些特征中,颜色、形状、位置特征最为直观,易于提取。纹理特征比较抽象,必须经过一定的处理或者转换为其他特征才能得到相应的可供使用的特征指标。通常文字内容特征至少需要经过字符分割或识别后才可能成为可利用的特征,一般只是用来判断车牌识别正确与否。

基于边缘检测的车牌定位方法

  •   所谓“边缘”就是指其周围像素灰度有阶跃变化的那些像素的集合。“边缘”的两侧分属于两个区域,每个区域的灰度均匀一致,而这两个区域的灰度在特征上存在一定的差异。边缘检测的任务是精确定位边缘和抑制噪声。检测的方法有多种, 例如Roberts 边缘算子、Prewitt 算子、Sobel 算子以及拉普拉斯边缘检测。这些方法正是利用物体边缘处灰度变化剧烈这一特点来检测图像的边缘。各算子对不同边缘类型的敏感程度不同, 产生的效果也不同, 经过大量实验分析可知, Roberts边缘算子是一种利用局部方差算子寻找边缘的算子, 定位比较精确; Prewitt算子和Sobel算子对噪声有一定的抑制能力, 但不能完全排除伪边缘; 拉普拉斯算子是二阶微分算子, 对图像中的阶跃型边缘点定位准确且具有旋转不变性, 但容易丢失一部分边缘的方向信息, 同时抗噪能力较差。针对不同的环境和要求, 选择合适的算子来对图像进行边缘检测才能达到好的效果。具体定位流程如图1所示。

     

与《车牌定位算法技术,车牌目标区域特点,基于边缘检测的车牌定位方法,基于彩色分割的车牌定位方法》相关列表
电话:400-900-3095
QQ:800152669
库存查询
Copyright(C) 2011-2021 Szcwdz.com 创唯电子 版权所有 备案号:粤ICP备11103613号
专注电子元件代理销售  QQ:800152669  电子邮件:sales@szcwdz.com  电话:400-900-3095