为了减小体积和重量,60年代出现了开关频率高于市电工作频率的开关转换器。最初,开关转换器的工作频率在 20 kHz – 30 kHz 之间。70年代以后,随着先进器件(比如高速晶体管)的推广应用,开关频率可达到超过 100 kHz。但是,随开关频率升高而增大的开关损耗,严重影响开关转换器的性能。为了减小开关损耗,出现了开关频率高达 1 MHz 的准谐振、零电流开关 (ZCS) DC-DC 转换器。每个开关器件均在零电流时导通与关断,这样开关损耗只与导通电流有关而与开关频率无关。在每个开关周期内,转换器都向输出端传输高频能量。
目前,开关转换器通常都封装成高功率密度的砖式模块,如 图1 所示。电源系统设计师在选择 DC-DC转换器模块时,通常只考虑体积、效率和价格,但很少考虑电路结构。由于目前转换器采用的电路结构(基本的电源转换电路)有许多种,所以了解转换器的电路结构,有助于选择适当的转换器。
图1 - 高密度 DC-DC 转换器模块,根据输入电压、输出电压和输出功率不同,转换器模块有上千种组合。这里显示的是体积最小的模块;尺寸为 2.28 x 1.45 x 0.5 英寸 (57.9 x 36.8 x 12.7 mm),最大输出功率可达 150 W。
本文主要说明准谐振、零电流开关 DC-DC 转换器的电路结构和工作原理。还讨论各种电路结构的不同特点和某些优点。
图2 是一个准谐振、零电流开关 DC-DC 转换器的简化电路图。由于单只固体开关导通时,能量由电源传输到负载,所以这种转换器称为单端正激转换器。该转换器为准谐振转换器,开关在零电流处转换,真正消除了开关损耗。但是,它又与谐振转换器不同,电容器 Cr 中贮存的能量不能返回到电感 Lr 中。
图2 - 准谐振、零电流开关 DC-DC 转换器简化电路图
该转换器主要由以下元器件组成:
准谐振、零电流开关 DC-DC 转换器通过能量传输循环完成功率变换。在给定输入电压的条件下,每次谐振都传输相同的力量,并且这些能量能够以不同的重复速率传输,因此可以改变传输到输出端的总功率(或电压)。这些能量又经 LO、Cr 输出滤波器平均或平滑后,输出稳定的功率(或电压)。需要输出更大功率时,重复速率将上升。
尽管现有许多转换器电路,但是 DC-DC 转换器作为模块式元件的出现,还必须考虑一些电路结构的问题。由于开关转换器的某些固有特性,比如功耗随着频率升高而增大,所以没有任何一种转换器结构在各个方面都优于其它转换器。
与谐振转换器不同,准谐振转换器只能单向从电源到负载传输能量,效率较高并且具有固有的稳定性。