
20世纪中期,人们提出了频带混叠的多载波通信方案,选择相互之间正交的载波频率作子载波,也就是我们所说的正交频分复用(OrthogONalFrequencyDivisionMultiplexing,OFDM)技术。这种“正交”表示的是载波频率间精确的数学关系。按照这种设想,OFDM既能充分利用信道带宽,也可以避免使用高速均衡和抗突发噪声差错。
目前,OFDM已经被国外的多个标准采用,如IEEE802.11a和ETSI(欧洲通信标准学会)的HiperL-AN/2标准同样采用OFDM作为调制方式,有线传输系统的应用也同样采用了基于OFDM的调制复用技术,如在xDSL中的离散多音频系统和有线调制器应用。
OFDM是一种特殊的多载波调制技术,用户的信息首先要经过串行到并行的转换,转变成多个低速率的数据码流,通过编码之后,调制为射频信号,传统的调制技术在同一个时刻只能用一种频率进行数据的传送,而OFDM则可以在正交的频率上同时发送多路信号,可以说是并行的传送多路信号,这样OFDM能够充分地利用信道的带宽。OFDM不用带通滤波器来分隔子载波,而是通过快速傅立叶变换(FFT)来选用那些即便混叠也能够保持正交的波形。
OFDM尽管还是一种频分复用(FDM),但已完全不同于过去的FDM。OFDM的接收机实际上是通过FFT实现的一组解调器。它将不同载波搬移至零频,然后在一个码元周期内积分,其他载波信号由于与所积分的信号正交,因此不会对信息的提取产生影响。OFDM的数据传输速率也与子载波的数量有关。
OFDM系统的子载波可以自适应地根据信道的情况选择调制方式,并且能够实现在各种调制方式之间的切换。选择和切换的原则是频谱利用率和误码率之间的平衡选择。在通常的通信系统中,为了保持一定的可靠性,选择通过采用功率控制和自适应调制协调工作的技术。信道好的时候,发射功率不变,可以增强调制方式(如64QAM),或者在低调制(如QPSK)时降低发射功率。功率控制与自适应调制要取得平衡,也就是说对于一个远端发射台,它有良好的信道,若发送功率保持不变,可使用较高的调制方案如64QAM;若功率可以减小,调制方案也相应降低,可使用QPSK。
①帧检测,②载波频率偏差及校正,③采样偏差及校正。