
60年代以前,电子管功放是主流功放。
60年代到80年代,是晶体管功放飞速发展的年代。
80年代中期,电子管功放的数量已经很少了。
80年代末期开始,电子管功放又有些起色,但仍然成不了主流功放。
电子管具有极好的物理特性,它的放大工作是在真空管内部进行的。在高电压工作状态下,从阴极发射出来的电子以600km/s的惊人速度飞向阳极。因此,电子管在放大器中具有最佳的瞬态响应特性。
电子管功放工作于高电压、小电流状态下,不但转换速率快,而且动态范围也大。对音乐峰值强信号不易产生过载,对快节奏的音乐细节能够忠实地予以再现。
由于交越失真而产生的脉冲尖峰,包含许多高次谐波,从而产生瞬态互调失真,在放音时表现为生硬刺耳的晶体管声。
电子管的放大系数一般不随工作频率的升高而产生变化,因此放大器的幅频特性变化稳定,而晶体管的放大系数随着频率的升高而降低,其幅频特性也会下降,因此电子管功放能获得更高的上限频率。
电子管功放具有较大的功率储备能力,当负载变化或输出功率过载时,其输出负载曲线的变化并不明显;而晶体管功放的抗过载能力极差,超过额定功率或稍有过载时,失真度会直线上升,无法正常工作。
电子管功放音色靓美,可贵之处就是含有丰富的谐波。由于有谐波的存在,故电子管功放的失真度很难做到0.1%以下,正是由于润色的谐波存在,使电子管功放变得格外靓丽温柔,丝丝扣人心弦。晶体管功放的谐波失真能做到0.03%以下,而在实际听觉上却不如谐波失真高达2% 的电子管功放,因为失真度高低与音色的靓丽并不是一回事。晶体管音色干硬,而电子管音色柔美,这主要是由放大器件本身的物理特性所决定的。
1、工作特点电路结构