
1、采用哈佛结构,分开的程序存储器和数据存储器。
2、用于单指令流多数据流(SIMD)作业的特殊指令集。
3、可进行并行处理,但不支援多任务。
4、用於宿主环境时可作为直接存储器访问(DMA )设备运作.
5、从模数转换器(ADC)获得数据,最终输出的是由数模转换器(DAC)转换为模拟信号的数据。
最基本的特征是:
1)能够在一个指令周期内实现一次或多次乘法累加(MAC)运算。所以,在DSP中集成了多个乘法累加运算单元,可以进行并行乘法累加运算。
2)能够在一个指令周期内完成对存储器的多次读取。所以,在DSP中集成了多个片内总线和多端口片内存储器。
3)为了加快处理器中的运算,在DSP中集成了多个地址产生单元,以支持循环寻址和位翻转寻址。
4)处理器中的运算大多是重复的运算,为了方便使用,大部分DSP都支持这种重复运算,而不用额外编写重复运算的指令。
5)大部分DSP都提供多个串行或并行I/O接口,以及特别I/O接口来处理特殊的数据,以降低成本和提高输出/输入性能。
根椐资料的介绍,数字信号处理器的选择有以下几条原则,综述如下:
1)算法格式 定点算法动态范围较小,如16位的定点算法,动态范围只有96dB,容易出现溢出问题,但是成本低,功耗低。所以大多数的数字信号处理器都是定点的,约占67%。浮点算法动态范围较大,如32位的浮点算法,动态范围有1536dB,处理速度大大高于定点的,总线宽度也比定点的宽,容易编程,但是成本较高,功耗也较大。浮点数字信号处理器大都用在高档产品上。
2)数据宽度 所有的浮点DSP都是32位宽度的,而定点DSP大多数是16位宽度的,也有24位的,如Motorola的DSP563xx系列;而Zoran 公司的ZR3800系列,则是20位的。数据宽度直接影响到DSP芯片的大小、封装管脚的数量和外围存储器的容量,因此也直接影响到DSP的成本。
3)速度 速度是选用DSP最重要的考虑因素。DSP的速度通常是指令周期的时间,也有指进行核心功能如FIR或 IIR滤波器的运算时间。有些DSP采用特大指令字组(VLIW)的结构,在一个周期内可执行多条指令。它和时钟的工作频率有密切关系。